Designing Fulfilling
Test Cases with
Test Aspect Model

Akiharu Satoh Shizuka Ban
NPO ASTER NPO ASTER
Minato-ku, Tokyo, Japan Minato-ku, Tokyo, Japan
Yuzuru Harayama Kunio Yamamoto
Panasonic ITS Co., Ltd. NPO ASTER

Yokohama, Kanagawa, Japan Minato-ku, Tokyo, Japan

L
Contents

1. Intfroduction

2. Use case of Test Aspect Model

3. Definition of Test Aspect and relationships
4

5

. Examples of Test Aspect Model
. Conclusion

1. Infroduction

Background of our proposal

UML testing profile 2.0(UTP2) allows test engineers to describe the architecture of test systems in
more detail. However, UTP2 is not sufficient to describe the architecture of test suites.

. <<TestComponent>>
AI’C h |Te C TU re Tougm Smart Phone Timer
. - model : String
Of TeST SUITeS O - OS : String
Display O/ - resolution : String \O
Speaker / GyroSensor
install

Application

- applicationName : String

ML~
TESTING
PROF' lE . Architecture A Is%%"’“mm e

of Test Systems

<<TestCase>>
TC-SV-1-1

Background of our proposal

So, a year ago, we proposed the test aspect, which reveals the aspect to be tested in INSTA 2018.
One of the features of the test aspect is it has UTP-enhanced notation.

<<TestAspect>>
XXX

TESTING
PROFILE

QOur new proposal

In INSTA 2018, our proposal gave examples of a test aspect model only, but not use cases which
derive test cases from a test aspect model.

We will give more examples of the use cases of a test aspect model, and show the merit of
considering a test aspect model in the test design process.

Sharing knowledge about test objects

Test Aspect Extracting new test requirements
Mode] and making test cases fulfilling

Complementing development models

(These use cases are shown later.)

2. Use case of
Test Aspect Model

Usual test analysis and design process

Context of
the project

Test

Development
Model S
: — B O] e][Te Y
Define Test
Requirements Project
Constraints,
Tacit Test Sic.
Knowledge Requirements |y —— |
| explanatory notes i
_} Design input/output flow
Test Cases —)
Deliverables / i
Knowledge

\

A problem of the process

Context of
the project

Development
Model Test
Objectives

Define Test
6 > Requirements \ Project
Constraints,
Tacit Test Sic.
Knowledge Requirements / _______________________________________ |
explanatory notes i

~ A

input/output flow
Test Cases :

_} Test Cases | Deliverables /
| Knowledge

Solution: making tacit knowledge explicit

Test engineers have various concerns for the development model from their own tacit knowledge.
These concerns helps in extracting aspects to be tested.

tacit

information on knowledge
bugs found in

the past

concerns

whether the web
system allows

EXpeErences multiple login

as user
development

model
(ex. login page
specification)

experiences

as developer what will happen

if a user enters an
expired password

whether user
. . input is
look In detail encrypted

e
The fesf aspect and fest aspect model

The test aspect is the aspect to be tested derived from the test engineers' concerns.
The test aspect model is the set of test aspects equipped with their relationships.

development
model

Test aspect model

The generic test aspect model

Sharing knowledge more effectively, test aspect model should not be specialized in a certain test
project. Then, we propose the generic test aspect model.
The generic test aspect model does not contain the information about certain test projects.

concrete
test aspect generalize

model on
(generic test

ABC system
. aspect model

generalize

generalize

-

concrete
test aspect
model on

123 service

concrete
test aspect

model on
XYZ software

Use cases of test aspect model

/ Use case A. \

Sharing knowledge
about test objects

&
9w ﬁ%

4 Use case B.
Extracting new test
requirements
and making fest cases
fulfilling

Tes@

suites

~

%

-~

_

Use case C.
Complementing

model

~

development models

additional
specification
dev.

%

1

3

Proposal of new ftest analysis and design

_ process with fest aspect model

Context of
DD AC the project

: Test Aspect Model
Analysis of the : Test
conforming to . S
Development Define Test Objectives

Development
Model AL

Development :
Model as @ Model Requirements

Test Basis
DB
DE Project

Tacit Test Constraints,
Knowledge Requirements etc.

DC

Generic Generalization Design M
Test Aspect of Test

Test Cases DF

Model Aspects

3. Definition of Test Aspect
and relationships

Notation of test aspect

The test aspect is the aspect to be tested derived from the test engineers’' concerns.
In the UML notation, a test aspect is represented by class with stereotype <<TestAspect>>

<<TestAspect>>
test aspect

e
Relationships between two test aspects

4 is-a N part-of (has-a) N
"Bisa A" "A has a B"
<<TestAspect>> <<TestAspect>>
A A
i T
<<TestAspect>> <<TestAspect>>
B B
A and B are A and B are
INn the relation of In the relation of

\taxonomic hierarchy - Kpossessive hierarchy -

e
Relationships between test aspects

and other elements

We define two kinds of relationships, extract and suggest, as relationships between a test aspect
and one of other model elements.

— < refersto
specification item

<<gxfract==
<<g5lggest>=

<<suggest>=> >| test aspect < —zextract=>_ | testrequirement
N
<<@xfract==
<<sUggest==
V4
test objective test case verifios P

4 Is designed to meet

4. Examples of
Test Aspect Model

L
The test base

The test base of our example is the ATM in the IntferBank Exchange Network (IBEN) shown in the UTP2
document.
We assume that the test level is the integration test.

country A
bank
netwoik

SWIFT

Network country B

bank
network

~ 7

Tes’r~s-c':ope

The Development Model of the ATM

The ATM software consists of 5 packages as follows.
Then, class diagrams are given for every package.

PkgATM J

<<interface>>
IATM

+withdraw{ in amount : IMoney) : Boolean
+deposit{ in amount : IMoney) : Boolean
+isPinCarrect(in c: Integer) : Boolean

+ selectOperation(in op : OpKind) : Boolean
+storeCardData(in ¢ CardData) : void

+ storeSWIFTNumber(in id : String, in account: String) : void

ATM

CardData

+pinCode : Integer

<<enumeration>>
OpKind

+ cardNumber : String

+isPinCorrect(in ¢ : Integer) : Boolean

- withdrawhoney : int
- getBalance : int
-wireMoney : int

]
1<<import==

SWIFTNetwork

| <<import==

<<import=>

I .
= -

<<import=>

. -
-
-
—-— =

HWControl

|
<<import==
|

pkgHWContral J

<<interface>>
IHardware

+geiStatus() - Boolean
+ejectMoney(in amount : IMoney) : void

+acceptMoneyy) : IMoney

+display(in message : Siring) : void

+ejectCard() - Boolean

+geiTransaclion/nfo(inout account - Siring, inout bic - Swiftld) - vaid

e
The Development Model of the ATM

z<interface== =<interface== current . CardData
hwEmulator - [Hardware sut: IATIM

| | |
| 1. storeCardData(current) »_l_ |

-

| behavior when a user
enters a valid pin-code

<

4 2. display("Enter PIN"™)

1

| 3. isPinCorrect(validPIM) »I

e
Trivial test requirements and test cases

These are trivial test requirements and test cases lead from the development model without the test

aspect model.

<<TestContext>>
Inteqration Test of Banking

<<TestCase>> <<TestCase>>
vallidPIN_TC invalidPIN_TC
- - ;
* N . I
<<vyerifies>> \<<Verlf|es>> I.

~

|
AN X ,
7’

NV

<<TestCase>>
retryEnterPIN_TC

e
7
s
e
4

rd
.~ <<verifies>>

<<TestRequirement>>
approveAuthorization

The hardware terminal (HWConfrol)

provides user's card and user's pin-code.

The ATM shall authorize this card and its

pin-code.

<<TestCase>>
authorizeCard_TC

<<TestCase>>
validWiring_TC

!
\ ’
A ’
o A /
<<verifies>>

/
\\ ¢ <<verifies>>
/

A /

N2
<<TestRequirement>>
approveTransaction

After a successful authorization of user's dataq,
money shall be deposited info the bank.

The ATM shall ensure a correct transaction
communication with the Bank.

Trying the improved test analysis process

Development Context of

the project

: Test Aspect Model

Analysis of the : Test
conforming to . S

Development Define Test Objectives
Development :

Model as a Model Requirements

Test Basis

DB DE Project

Tacit Test Constraints,
Knowledge Requirements etc.

DC .
EErErc Generalization Design
Test Aspect of Test

Test Cases DF

Model Aspects

Discovering concerns

Looking at the specifications described in the test base, test engineers indicate their concerns.

looking in deftail

ATM
| <<import=>
Bank |
]
M{import:»:»
\/

SWIFTNetwork |

-

<<import>=

HWControl |

-
=
-
-

<<interface=>>
hwEmulator : IHardware

<<import==

o>

-

|

|
=<imports=

|

| _Money I

Test base

<<interface=>
sut: IATM

current : CardData

1: storeCardData(current)

2: display("Enter PIN")

"]

-

3. isPinCorrect{validPIN)

H< e]
4: display("Valid PIN") |

h §
o

3.1: isPinCorrect(validPIN)
true j]
-

e
From concerns to test aspects

Test engineers indicate their concerns as test aspects in the class diagram.

<<TestAspect>>

How is the response speed of _
response time

each method such as
isPinCorrect appropriate?¢

What is "invalid" of an invalid
carde And how does an invalid
card behave?

<<TestAspect>>
what is 'invalid' ?

s it possible to conjecture
personal information from error <<TestAspect>>

messages or nofe inference of personal data

and so on ...

Creating a test aspect model

<<TestAspect>>

security

Q

<<TestAspect>>
reliability

<<TestAspect>>
inference of personal data

Q

<<TestAspect>>
fraud when remitting

<<TestAspect>>
accurate result

<<TestAspect>>
fault recovery

<<TestAspect>>
appropriate access modifier

<<TestAspect>>
upper limit of retry

<<TestAspect>>
performance efficiency

I

<<TestAspect>>
response time

Q

<<TestAspect>>
what is 'invalid' ?

>

<<TestAspect>>
flactional processing

<<TestAspect>>

overflow of number types

<<TestAspect>>
<<TestAspect>> Kt—] partner bank
type of bank q\
<<TestAspect>>
non-partnered bank
<<TestAspect>>
exception handling
<<TestAspect>>
4/ damaged card
<<TestAspect>> :] <<TestAspect>>
card invalid card <]\ <<Te§tA§pect;>
expired car
<<TestAspect>>
non-supported card
<<TestAspect>>
// unacceptable character
<<TeStASpeCt>> 4‘ <<TeStASpeCt>> qi <<TeStASpeCt>>
PIN invalid PIN

A part of the test aspect model conforming to the ATM software

too little/much length

<<TestAspect>>
type of variables

Creating a test aspect model

<<TestAspect>>

security

Q

<<TestAspect>>
reliability

<<TestAspect>>
inference of personal data

Q

<<TestAspect>>
fraud when remitting

<<TestAspect>>
accurate result

<<TestAspect>>
fault recovery

—_~

7

\
>

sl

/

<<TestAspect>>

<<TestAspect>>
partner bank

type of bank ,E:

\

<<TestAspect>>
appropriate access modifier

<<TestAspect>>
upper limit of retry

<<TestAspect>>
performance efficiency

’—Y_~\
< N

<<TestAspect>>)

response time s

-~

_— g =

‘l

Q

<<TestAspect>>

what is ‘invalid’ ?

>

<<TestAspect>>
flactional processing

<<TestAspect>>
overflow of number types

<<TestAspect>> \

- ~
/ non-partnered bank \
<<TestAspect>>)]
exception handling |
e I <<TestAspect>> I
damaged card I
<<TestAspect>> <<TestAspect;‘> d/
<H—— /
card invalid card <]& <<Te_stA§pect;>
\ expired car) /
\
\ <<TestAspect>>/
«~J non-supported<ard
S e &
<<TestAspect>>
// unacceptable character
<<TeStASpeCt>> j <<TestASpeCt>> 47 <<TeStASpeCt>>
AL invalid PIN too little/much length

<<TestAspect>>
type of variables

A part of the test aspect model conforming to the ATM software

e
Use case 1: Extracting new test

requirements

The consideration of test aspects extracts new test requirements.

<<TestAspect>> Test Requirements
Test Aspect Model If one of the methods returns
neither true nor false, an
<<TestAspect>> _ | <<extract>> _ 5 <<TestRequirement>> opproprio’re excepﬂon hcmdling
exception handling exceptionHandling .
will occur.
<<TestAspect>> || _<<extract>> _ > <<TestRequirement>>
non-partnered bank cardCompatibility If an incompatible card is
entered in ATM, ATM software will
<<TestRequirement>> return false.
approveAuthorization
<<TestRequirement>>
approveTransaction

e
Use case 1: Extracting new test

requirements

In this way, test engineers can enhance the test context.

new test
requirements

<<TestContext>>
Integration Test of Banking
<<TestCase>> <<TestCase>> <<TestCase>> <<TestCase>>
vallidPIN_TC invalidPIN_TC retryEnterPIN_TC validWiring_TC
\\ ,I . - “ N N I . - |
<<ve}Lfies>§<veriﬁes>><<veriﬂes>> flles>><<verifles>> <<verifies>> <<verifies>>
\ - -
\ / e N ! PR I
/ - N ! - 1
e /- N\ v /- AV
<<TestRequirement>> <<TestRequirement>> <<TestRequirement>> <<TestRequirement>>
approveAuthorization exceptionHandling approveTransaction cardCompatibility
7 I N S AR T~
<<verifies>> <<verifies>> e<verifiés>> <<verifies>> 2<verifies>> <<vetifies>>
y S <<veriffes>>_ _ N T~ o RN
ff ~ N 7 =~ - - - > ~ N S~ ~ o N ~
< / - - -~ ~
<<TestCase>> <<TestCase>> <<TestCase>> <<TestCase>>
retryCountValidation_TC authorizationException_TC nonNumericinput corruptedDatalnCard

e
Use case 2: Extracting new tfest cases

Looking aft test aspects in detail, we sometimes find the aspects that show factors and levels of
parameters. Test engineers can use such test aspects when designing test cases.

Y ~
{ =<TestAspect== \
<<TestAspect>> (E-T partner bank | ———— -
type of bank I A
Q\r <<TestAspect=> I | } 1121314/5167)8
I ngn-partnered bank Type OfBallk partllel‘ bﬂllk . Y Y Y Y
I I non-partnered bank ' Y YY|Y
<<TestAspect>> | | <<TestAspect>> I |Conditions|Card Status damaged |y Y
card V‘\ damaged card | eXpiIed | Y Y
<<TestAspect>> l non-supported : Y Y
invalid card {:Eesi:‘:;p::rt;} | | Expected |Card Validationsvalid 'x
\7\:\ ° 1 | Actions invalid I xxxXXxX
I <<TestAspect=> | S’
non-supported card]
M / New test case

Test aspects about card

L
Use case 3: Complementing the

development model

The consideration of test aspects complements the shortcoming of the development model.

~AREREIEES= ~AAREREEE BTG SR <<interface>> <<interface>> current - CardData
hwEmulator : IHardware sut: IATM Sl IHEr s sut 1ATM

I
I
1 storeCardDat t
A e »u : | 1. storeCardData(current) |
I
I
I
I
I
|

I

|

> I

‘ ™ |
I‘ 2: display("Enter PIN") ! :

I

|

I

2 display("Enter PIN")
<

37 isPinCorrect(validPIM) >J_

|
|
|
|
3.1 isPinCorrect{vali dPIM)
true
true N
TGEELELCEEEEEE T
|
|

N _responded in 10 ms.

| isPinCorrect must be T

&

t=now 1 3. isPinCorrect{validPIN) ,5

3.1 isPinCorrect{validPIN)

true
- — — T ————

<<TestAspect>>
performance efficiency
(J L L — N

Lo 4: display("Valid PIN") | Comp|§m§nf the
<<TestAspect>> specification on
response time
Improved

.

response speed

5. Conclusion

Utilizing tacit knowledge with UTP

Test engineers' concerns on a test object is important to prevent from insufficient testing.

We gave the methodology of explicating these concerns with UTP, that is the test aspect and the
fest aspect model.

The effects of considering test aspects will be as follows:

Test Aspect
\Yilelels]

Extracting new test requirements
‘ and making test cases fulfilling

» Sharing knowledge about test objects

“ Complementing development models

L
Future tasks

« Examination of relationships between other methodologies.

* We will examine the relationship between the test aspect model and
other methodologies of the test development.

« How to create a better test aspect model.

 Where, we think "better’ means as follows:
« the model leads to more fulfilling test cases
« the model can be used in a more general purpose

L
Special Thanks

Satomi-Juku

What is Satomi-Juku ?

"Satomi-Juku" is a research group of test architecture in NPO ASTER.
It is a place to disclose more advanced test development methodologies
through debate, and share them.

