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1. Infroduction




Background of our proposal

UML testing profile 2.0(UTP2) allows test engineers to describe the architecture of test systems in
more detail. However, UTP2 is not sufficient to describe the architecture of test suites.
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Background of our proposal

So, a year ago, we proposed the test aspect, which reveals the aspect to be tested in INSTA 2018.
One of the features of the test aspect is it has UTP-enhanced notation.
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QOur new proposal

In INSTA 2018, our proposal gave examples of a test aspect model only, but not use cases which
derive test cases from a test aspect model.

We will give more examples of the use cases of a test aspect model, and show the merit of
considering a test aspect model in the test design process.

Sharing knowledge about test objects

Test Aspect Extracting new test requirements
Mode] and making test cases fulfilling

Complementing development models

( These use cases are shown later. )




2. Use case of
Test Aspect Model




Usual test analysis and design process
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A problem of the process
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Solution: making tacit knowledge explicit

Test engineers have various concerns for the development model from their own tacit knowledge.
These concerns helps in extracting aspects to be tested.
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e
The fesf aspect and fest aspect model

The test aspect is the aspect to be tested derived from the test engineers' concerns.
The test aspect model is the set of test aspects equipped with their relationships.

development
model

Test aspect model



The generic test aspect model

Sharing knowledge more effectively, test aspect model should not be specialized in a certain test
project. Then, we propose the generic test aspect model.
The generic test aspect model does not contain the information about certain test projects.
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Use cases of test aspect model
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Proposal of new ftest analysis and design

_ process with fest aspect model
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3. Definition of Test Aspect
and relationships




Notation of test aspect

The test aspect is the aspect to be tested derived from the test engineers’' concerns.
In the UML notation, a test aspect is represented by class with stereotype <<TestAspect>>

<<TestAspect>>
test aspect
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Relationships between two test aspects
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e
Relationships between test aspects

and other elements

We define two kinds of relationships, extract and suggest, as relationships between a test aspect
and one of other model elements.
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4. Examples of
Test Aspect Model




L
The test base

The test base of our example is the ATM in the IntferBank Exchange Network (IBEN) shown in the UTP2
document.
We assume that the test level is the integration test.
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The Development Model of the ATM

The ATM software consists of 5 packages as follows.
Then, class diagrams are given for every package.

PkgATM J

<<interface>>
IATM

+withdraw{ in amount : IMoney) : Boolean
+deposit{ in amount : IMoney) : Boolean
+isPinCarrect(in c: Integer) : Boolean

+ selectOperation( in op : OpKind) : Boolean
+storeCardData( in ¢ CardData) : void

+ storeSWIFTNumber( in id : String, in account: String) : void

ATM

CardData

+pinCode : Integer

<<enumeration>>
OpKind

+ cardNumber : String

+isPinCorrect( in ¢ : Integer) : Boolean

- withdrawhoney : int
- getBalance : int
-wireMoney : int
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<<interface>>
IHardware

+geiStatus() - Boolean
+ejectMoney( in amount : IMoney) : void

+acceptMoneyy) : IMoney

+display( in message : Siring) : void

+ejectCard() - Boolean

+geiTransaclion/nfo(inout account - Siring, inout bic - Swiftld) - vaid
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The Development Model of the ATM
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Trivial test requirements and test cases

These are trivial test requirements and test cases lead from the development model without the test

aspect model.
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<<TestRequirement>>
approveAuthorization

The hardware terminal (HWConfrol)

provides user's card and user's pin-code.

The ATM shall authorize this card and its

pin-code.
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<<TestRequirement>>
approveTransaction

After a successful authorization of user's dataq,
money shall be deposited info the bank.

The ATM shall ensure a correct transaction
communication with the Bank.




Trying the improved test analysis process
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Discovering concerns

Looking at the specifications described in the test base, test engineers indicate their concerns.
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e
From concerns to test aspects

Test engineers indicate their concerns as test aspects in the class diagram.

<<TestAspect>>
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Creating a test aspect model

<<TestAspect>>
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A part of the test aspect model conforming to the ATM software
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<<TestAspect>>
type of variables




Creating a test aspect model
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Use case 1: Extracting new test

requirements

The consideration of test aspects extracts new test requirements.

<<TestAspect>> Test Requirements
Test Aspect Model If one of the methods returns
neither true nor false, an
<<TestAspect>> _ | <<extract>> _ 5 <<TestRequirement>> opproprio’re excepﬂon hcmdling
exception handling exceptionHandling .
will occur.
<<TestAspect>> || _<<extract>> _ > <<TestRequirement>>
non-partnered bank cardCompatibility If an incompatible card is
entered in ATM, ATM software will
<<TestRequirement>> return false.
approveAuthorization
<<TestRequirement>>
approveTransaction
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Use case 1: Extracting new test

requirements

In this way, test engineers can enhance the test context.

new test
requirements
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Use case 2: Extracting new tfest cases

Looking aft test aspects in detail, we sometimes find the aspects that show factors and levels of
parameters. Test engineers can use such test aspects when designing test cases.
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Use case 3: Complementing the

development model

The consideration of test aspects complements the shortcoming of the development model.
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5. Conclusion




Utilizing tacit knowledge with UTP

Test engineers' concerns on a test object is important to prevent from insufficient testing.

We gave the methodology of explicating these concerns with UTP, that is the test aspect and the
fest aspect model.

The effects of considering test aspects will be as follows:

Test Aspect
\Yilelels]

Extracting new test requirements
‘ and making test cases fulfilling

» Sharing knowledge about test objects

“ Complementing development models
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Future tasks

« Examination of relationships between other methodologies.

* We will examine the relationship between the test aspect model and
other methodologies of the test development.

« How to create a better test aspect model.

 Where, we think "better’ means as follows:
« the model leads to more fulfilling test cases
« the model can be used in a more general purpose
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Satomi-Juku

What is Satomi-Juku ?

"Satomi-Juku" is a research group of test architecture in NPO ASTER.
It is a place to disclose more advanced test development methodologies
through debate, and share them.



