

テスト設計コンテスト '14

NTTデータ流テスト設計プロセスの策定と実践 ~自動販売機のシステムテストを例に~

2014年3月8日

株式会社NTTデータ 技術開発本部プロアクティブ・テスティングCOE チーム「らくてす」

0. チーム「らくてす」の紹介

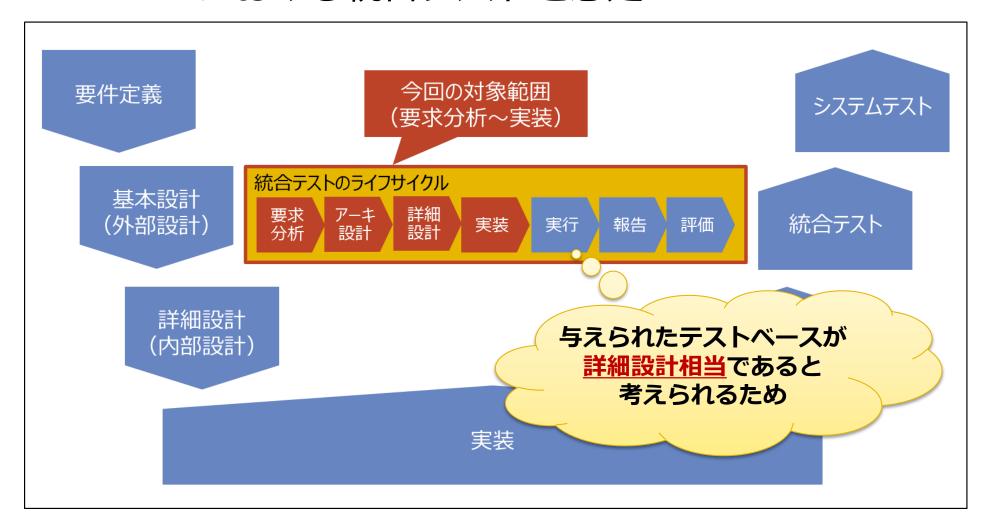
NTT Data

- ■メンバーの所属
 - ▶ 株式会社NTTデータ 技術開発本部 プロアクティブ・テスティングCOE

関するR&Dを行う組織

- プロアクティブ・テスティングCOE NTTデータグループ向けのソフトウェアテスト(主に機能テスト)に
 - テストプロセスの策定・普及展開
 - 上記プロセスを実現したツールの開発・普及展開
- 出場の目的
 - ▶ 普段の業務は仕様書/設計書ベースのテスト詳細設計が中心

テスト設計コンテストは<u>テスト要求分析/テストアーキテクチャ</u>に ついて<u>じっくり考えて、かつ、手を動かす</u>のに非常にいい機会


- 1. テスト方針
- 2. テスト要求分析
- 3. テストアーキテクチャ設計
- 4. テスト詳細設計
- 5. テスト実装
- 6. まとめ

1. テスト方針

1.1 工程定義

■ Test.SSFにおける統合テストを想定

「SSFに基づくテスト技術フレームワーク」より

1.2 全体方針

- 以下の4点を全体方針とする
 - 1. 業界標準に準拠したプロセスとする

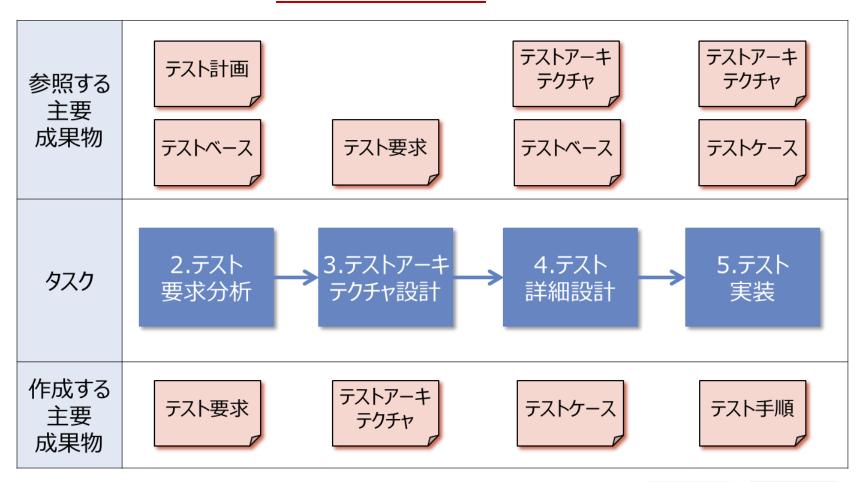
JIS X 25010をベースにテスト設計を行う

2. 仕様書の情報に閉じない

仕様書に明記されていない情報も極力推測して補完する

3. 成果物間のトレーサビリティをしっかりとる

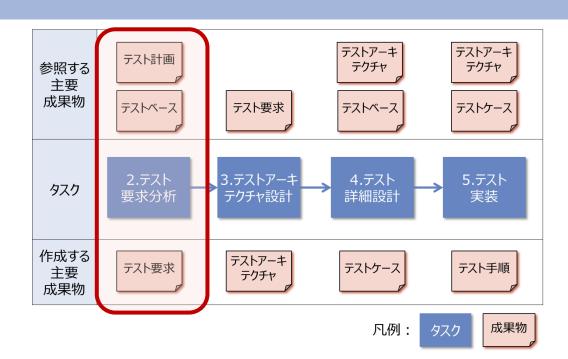
成果物を見るだけで設計の意図がわかるようなプロセスにする


4. 客観的にわかりやすい

成果物間の関連が複雑でないシンプルなプロセスにする

1.3 テスト設計作業の全体フロー

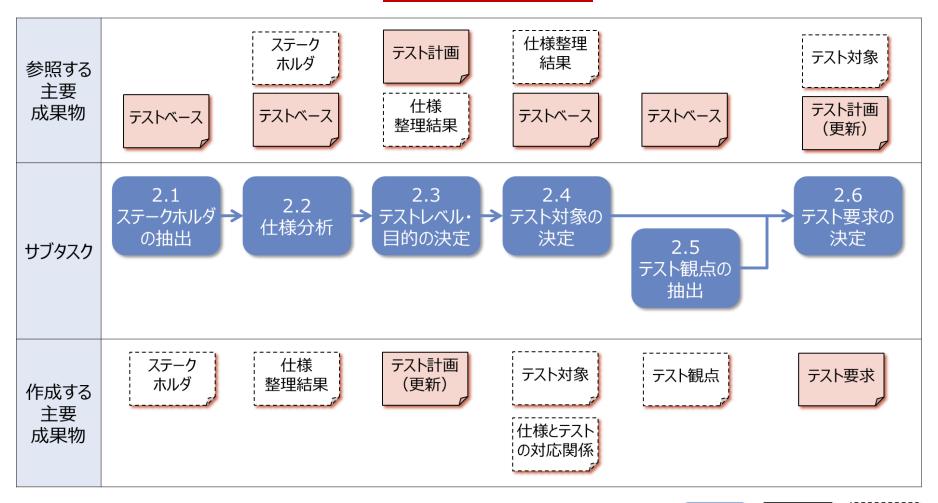
■ テスト設計作業を4つのタスクに分解して実施する



凡例:

タスク

成果物


2. テスト要求分析

2.0 テスト要求分析の作業フロー

■ テスト要求分析作業を6つのタスクに分解して実施する

凡例:

サブ タスク

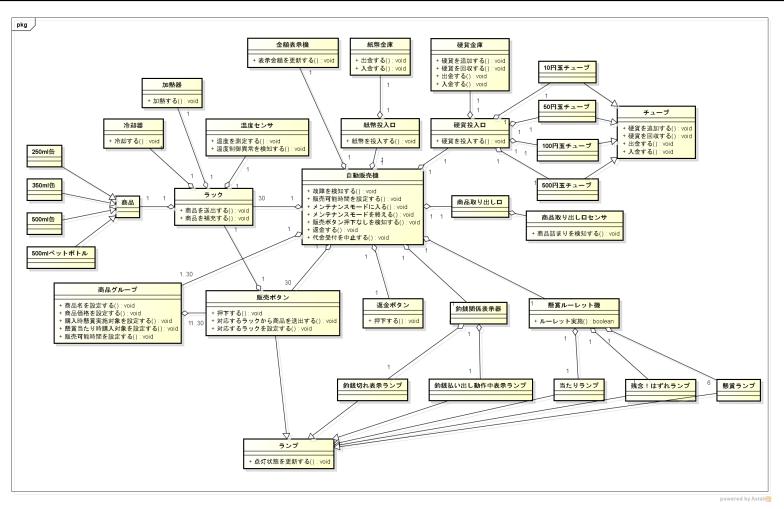
成果物

中間 成果物

2.1 ステークホルダーの抽出

■ 自動販売機のライフサイクルを想定し、ステークホル ダーを抽出

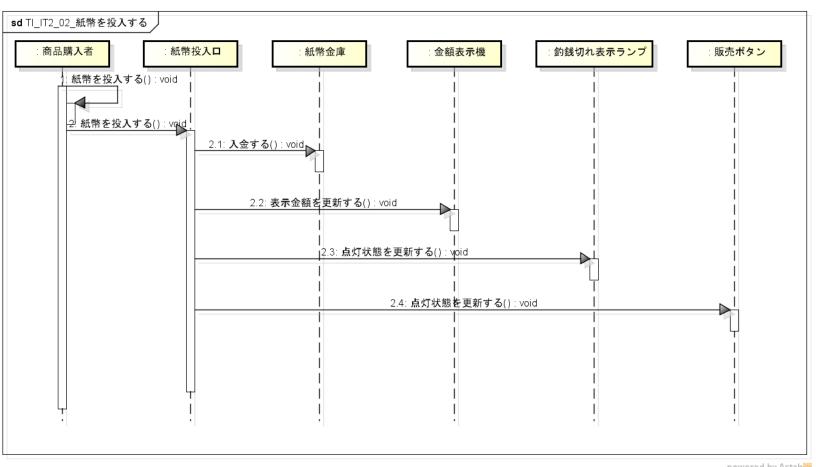
ライフ サイクル	ステークホルダ	判定	理由
設置	設置業者	×	<u>ソフトウェアは関連しない</u> ため、テスト対象外 とする
販売準備	販売者		販売者が準備する際のユースケースおよび関係 する自動販売機の機能をテスト対象とする。 ただし、 <u>ソフトウェアが関連しない範囲は対象</u> <u>外</u> とする
販売中	商品購入者		商品を購入する際のユースケースおよび関係す る自動販売機の機能をテスト対象とする
修理中	販売者		自動販売機を修理する際のユースケースおよび 関係する自動販売機の機能をテスト対象とする
情報活用	情報解析担当者	×	売上データに関連する機能は対象外と明記され ている
運用終了	撤去業者	×	<u>ソフトウェアは関連しない</u> ため、テスト対象外 とする


2.2 仕様の分析(1/2)

11

■ 記述された振る舞いをUMLを用いて表現

クラス図:構成要素をクラス、振る舞いをメソッドとして整理



2.2 仕様の分析(2/2)

■ 記述された振る舞いをUMLを用いて表現

シーケンス図:振る舞いごとにクラス間の相互作用を整理

powered by Astah

12

2.3 テストレベル・目的の決定(1/2)

■ 仕様分析の結果からテストレベルを決定

統合テスト のレベル	テスト対象 の単位	定義	当初計画時の テスト対象の単位
レベル1	機能	シーケンス図において <u>自動販</u> 売機の構成要素によって開 始され、かつその <u>結果が確</u> <u>認できるまで</u> を範囲とする。	ハードウェア構成要素/販売 者機能
レベル2	アクション	シーケンス図において <u>アクター</u> <u>(ステークホルダ)の1回の</u> 操作によって行われる一連 の機能とする。	ユースケース

2.3 テストレベル・目的の決定(2/2)

■ 品質特性をベースにテスト目体を決定

テスト対象の単位	品質特性	テスト目的
機能	機能適合性	機能が期待通りに動作することを確認する。
	性能効率性	機能の実行時間、および実行時の使用リソースが適切で
		あることを確認する。
アクション	機能適合性	想定されるアクターが期待通りにアクションからの一連の
		ユースケースを実行できることを確認する。
	性能効率性	アクションからの一連のユースケースの実行時間、および実
		行時の使用リソースが適切であることを確認する。
	使用性	想定されるアクターがアクションからの一連のユースケースを
		理解し、正しく実行できることを確認する。
	信頼性	アクションからの一連のユースケースを実行中に故障が発
		生した場合に、適切にリカバリができることを確認する。
	セキュリティ	適切なアクター以外ではアクションからの一連のユースケー
		スを実行できないことを確認する。

2.4 テスト対象の決定(1/3)

15

■テスト対象を列挙

レベル1:ハードウェアの機能を中心に列挙

テスト対象(機能)	テストベース名	テストベースの該当箇所
販売ボタン点灯	ハードウェア仕様書	1.2販売ボタン
	ユースケース仕様書	3.3販売ボタン
硬貨受理	ハードウェア仕様書	1.3貨幣投入口
紙幣受理	ハードウェア仕様書	1.3貨幣投入口
金額表示	ハードウェア仕様書	1.4金額表示機
商品送出	_	_
返金	ハードウェア仕様書	1.3貨幣投入口
		1.8返金ボタン
懸賞	ハードウェア仕様書	1.9懸賞ルーレット機
	ユースケース仕様書	3.2自動販売機
		3.3販売ボタン
釣銭切れ表示	ハードウェア仕様書	1.6釣銭取り出し口
		1.7釣銭関係表示器

2.4 テスト対象の決定(2/3)

■テスト対象を列挙

レベル2(1/3):商品購入者のとれるアクション

テスト対象(アクション)	テストベース名	テストベースの該当箇所
硬貨を投入する	ユースケース仕様書	2.1代金投入ユースケース
紙幣を投入する	ユースケース仕様書	2.1代金投入ユースケース
販売ボタンを押下する	ユースケース仕様書	2.2商品選択ユースケース 2.4懸賞ユースケース
返金ボタンを押下する	ユースケース仕様書	2.3返金ユースケース

レベル2(2/3):センサー類のとれるアクション

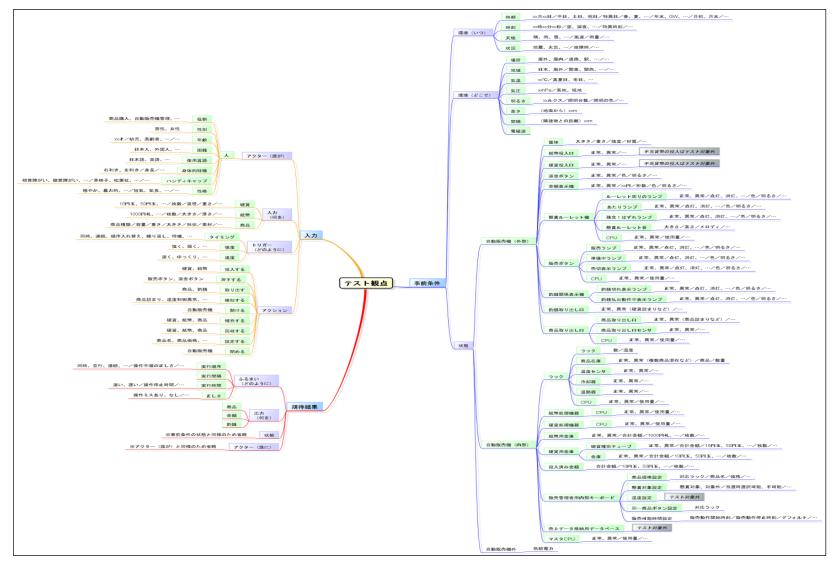
テスト対象(ユースケース)	抽出元	該当箇所
販売ボタン押下なしを検知する	ハードウェア仕様書	1.3貨幣投入口
商品詰まりを検知する	ハードウェア仕様書	1.5商品取り出し口
温度制御異常を検知する	ハードウェア仕様書	2.1販売管理者用の内部キー ボード (各商品の設定)
その他故障を検知する	ハードウェア仕様書	全体
	ユースケース仕様書	

2.4 テスト対象の決定(3/3)

17

■テスト対象を列挙

レベル2(3/3): 販売者のとれるアクション


テスト対象	(アクション)	テストベース名	テス	トベースの該当箇所	
メンテナンスを開始する	5	TR_IT2-41-F01	自動販	売機がメンテナンス可能	
			となるこ	とを確認する	
商品を補充する		TR_IT2-42-F01	商品が	正しく補充されることを	
			確認す	る	
商品名を設定する		TR_IT2-44-F01	商品名	が正しく設定されること	
			を確認	する	
商品価格を設定する		TR_IT2-45-F01	商品ご	どの価格が正しく設定さ	
			れること	(を確認する	
以下、省略					

2.5 テスト観点の洗い出し

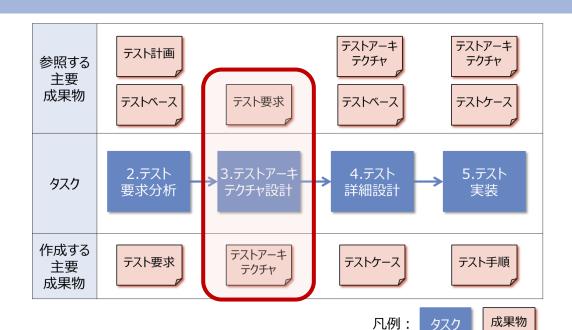
18

■ 5W1Hをベースに思考を発散

2.6 テスト要求の抽出

19

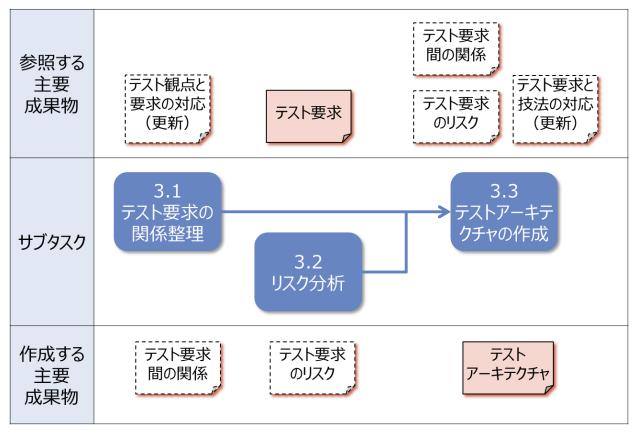
■ 2.3のテスト目的と2.4のテスト対象を対応づける


機能に対する機能性のテスト要求の例

テスト対象(機能)	ID	テスト要求
販売ボタン点灯	TR_IT1-01-F01	販売ボタンの点灯が正しく実施
		されることを確認する
硬貨受理	TR_IT1-02-F01	硬貨の受理が正しく実施される
		ことを確認する
紙幣受理	TR_IT1-03-F01	紙幣の受理/非受理が正しく
		実施されることを確認する

アクションに対する性能効率性の例

テスト対象(アクション)	ID	テスト要求
硬貨を投入する	TR_IT2-01-P01	硬貨の連続投入間隔が仕様を 満たしていることを確認する
紙幣を投入する	TR_IT2-02-P01	紙幣の連続投入間隔が仕様を 満たしていることを確認する


3. テストアーキテクチャ設計

3.0 テストアーキテクチャ設計の作業フロー

NTTData

■ テストアーキテクチャ設計作業を<u>3つのタスク</u>に分解して実施する

凡例:

サブ タスク 成果物

中間 成果物

3.1 テスト要求間の関係整理

22

■ <u>重複するテストの発見/テスト順序の決定</u>のために、テスト要求間の依存関係を整理

機能とアクション間の整理

		テノ	ストタ	寸象	(杉	態能)	
テスト対象 (アクション)	販売ボタン点灯	硬貨受理	紙幣受理	金額表示	商品送出	返金	懸賞	釣銭切れ表示
硬貨を投入する	\bigcirc	0		0				
紙幣を投入する			0	0				
販売ボタンを押下する	0	0		0	\bigcirc	\bigcirc	\bigcirc	
返金ボタンを押下する	0			0		\bigcirc		

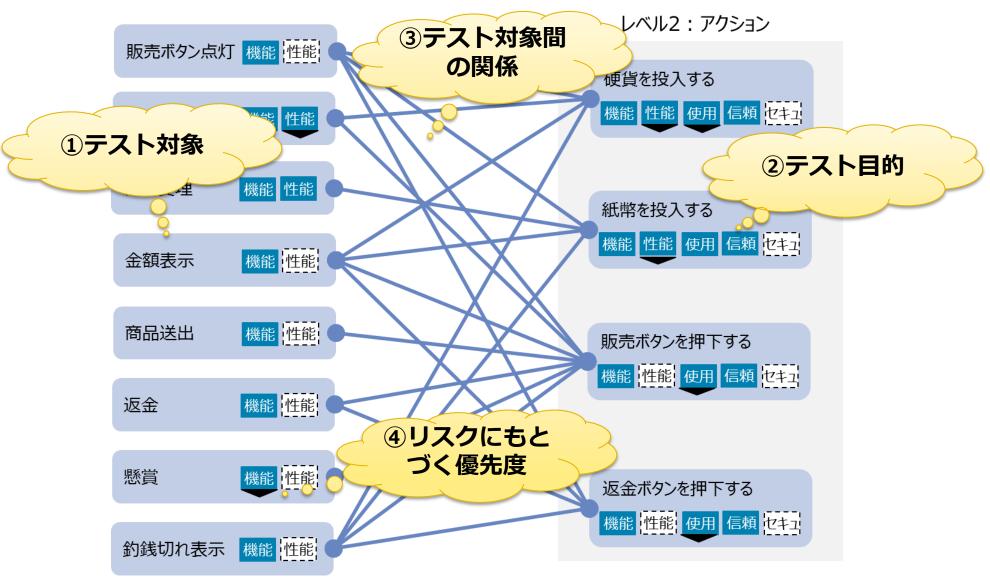
3.2 リスク分析(1/2)

■ テストの優先度を決定するために、ステークホルダに発生しえるリスクを分析

想定される事象および危害(ステークホルダが"販売者"のテスト対象)

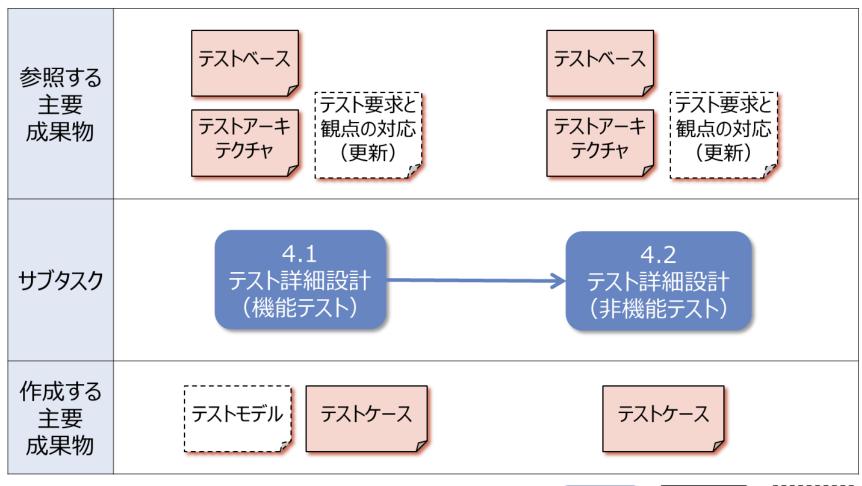
テスト対象	テスト要求	想定される事象	想定される危害
メンテナンスを開始する	自動販売機がメン	メンテナンス状態にならない	メンテナンスを実施でき
	テナンス可能となる		ない
	ことを確認する		
商品を補充する	商品が正しく補充	商品が入らない	商品を補充できない
	されることを確認す	商品が「販売可能」状態に	商品を販売できない
	る	ならない	
	商品が妥当な時	販売可能になるまで時間が	商品を販売できない
	間内で最適温度	かかる	
	になる(「販売中」	加熱/冷却の電力効率が	電気代が多くかかる
	になる)ことを確認	悪い	法令・ガイドラインに違
	する		反する

3.2 リスク分析(2/2)


■ 高/中/低で三段階評価しアクションを決定

	作業方針						
リスク度	テスト設計・実装・ 実行の順序	テスト設計のレ ビュー方針	テスト設計者 のスキル	テスト実行時の 証跡保存			
高	1番目	レビューでの指摘内容を 修正後、再レビューの必 要が必要テスト責任者の 承認が必要	- 自動販売機のテス	全てのテストケースの 証跡を保存する テスト責任者が証跡 を確認する			
中	2番目	レビューでの指摘内容を 修正後、再レビューの必 要が必要 テスト責任者の承認が不 要	ト設計の経験があること	全てのテストケースの証跡を保存する			
低	3番目	レビューでの指摘内容を 修正後、再レビューの必 要なし テスト責任者の承認が不 要	特になし	インシデントが発生し た場合にのみ証跡を 保存する			

3.3 テストアーキテクチャ


4. テスト詳細設計

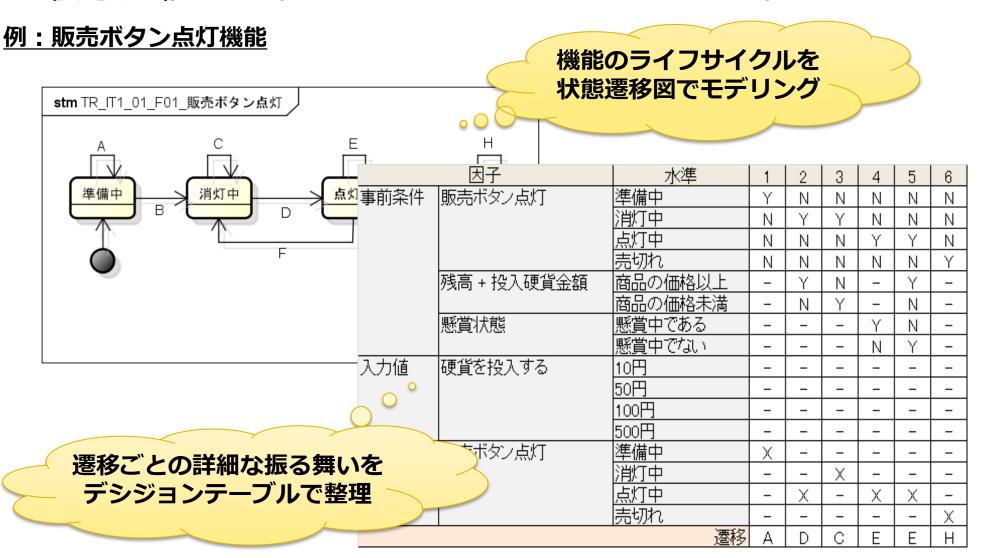
4.0 テスト詳細設計の作業フロー

NTTData

■ テスト詳細設計作業を2つのタスクに分解して実施する

※テストレベル別に実施する

凡例: サブ タスク


成果物

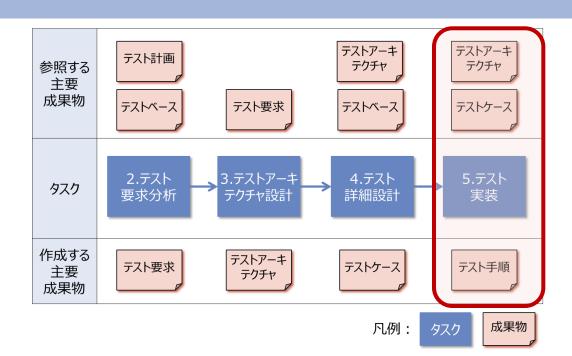
中間 成果物

4.1 テスト詳細設計 (機能テスト)

■ 状態遷移テスト+デシジョンテーブルテスト

4.2 テスト詳細設計(非機能テスト)

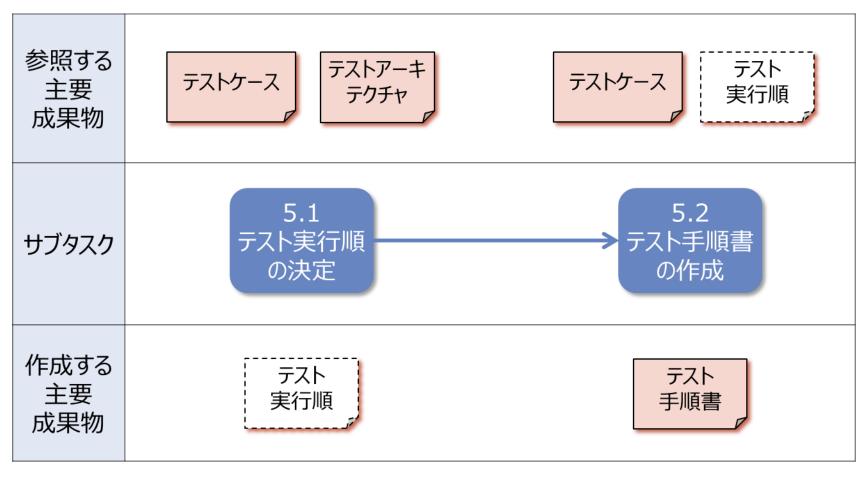
■ テスト要求ごとにテスト観点にもとづいて作成


例:商品を補充する(性能テスト)

テストケース					
事前条件	入力値		期待結果		
・商品状態が「準備中」であること。	商品が最適温度(あたたか~い)	になるまで待機する。	商品が妥当な時間内	(1時間)	で「販売中」になること。
・商品が「あたたか~い」対象商品であること。					
・外気温が24度 (春・秋を想定) であること。		°			

環境(Where)から作成

<u>テスト要求に対応</u>づく テストケースを作成


5. テスト実装

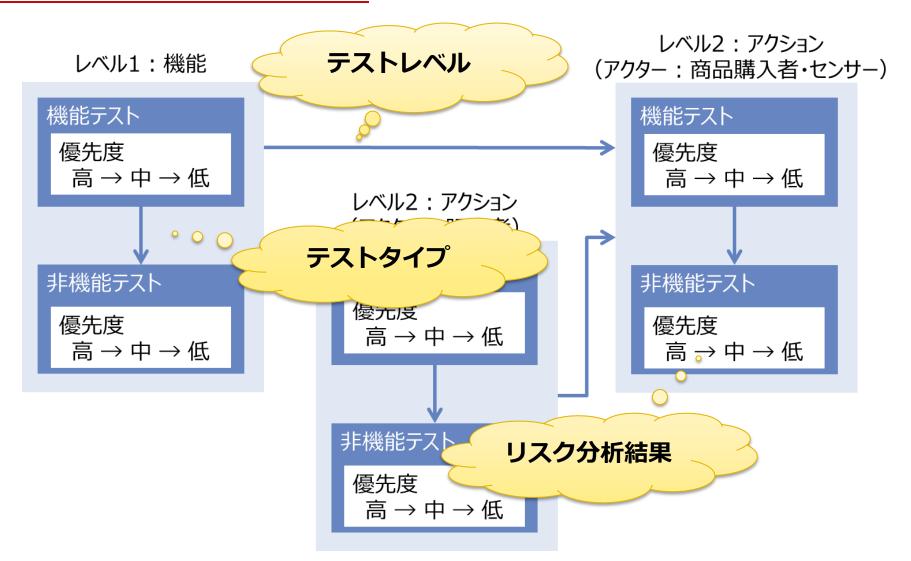
5.0 テスト実装の作業フロー

■ テスト実装作業を2つのタスクに分解して実施する

凡例:

サブ タスク

成果物


一中間 成果物_。

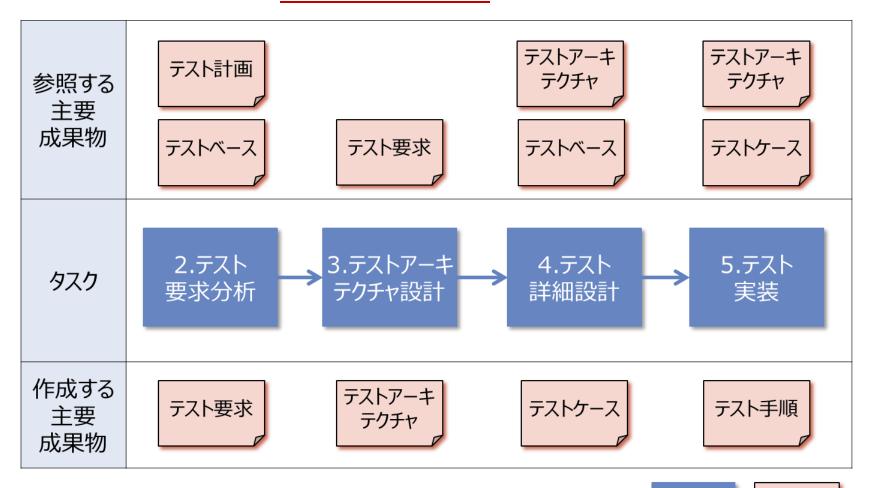
5.1 テスト実行順の決定

32

■ <u>テストアーキテクチャ</u>にもとづいて実行順序を整理

5.2 テスト手順書の作成

- テスト手順書には以下の内容を記述
 - ▶ まとめて実行するテストケースのセットの定義
 - テストスイートとして作成する
 - ▶ 実行するテストケースの順序
 - テストケースのIDやテストケースのファイル名などにより示す
 - ▶ すべてのテストケースを実行する前、および実行した後に行 う作業
 - テスト環境構築…etc
 - 各テストケースを実行する間に行う作業
 - 初期化
 - 事前状態の設定…etc



6. まとめ

6.1 テスト設計作業の全体フロー(再掲)

NTTData

■ テスト設計作業を4つのタスクに分解して実施した

凡例:

タスク

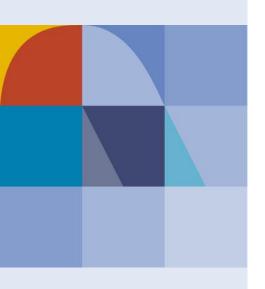
成果物

6.2 全体方針

- 以下の4点を全体方針とした
 - 1. 業界標準に準拠したプロセスとする

JIS X 25010の品質特性をベースにテスト設計を行った

2. 仕様書の情報に閉じない


管理者振る舞いを中心に明記のない仕様についても考慮した

3. 成果物間のトレーサビリティをしっかりとる

全ての成果物の入出力関係を明確にした

4. 客観的にわかりやすい

成果物の入出力関係な明快なプロセスとした

NTTData

Global IT Innovator