INSTA 2016, Chicago, Apr 10, 2016

..« TESEM A Tool for Verifying Security
Design Pattern Applications

Hironori Washizaki
Waseda University, Tokyo, Japan

Collaborators: Takanori Kobashi, Masatoshi Yoshizawa,
Yoshiaki Fukazawa (Waseda University)

Takao Okubo (Institute of Information Security)
Haruhiko Kaiya (Kanagawa University)
Nobukazu Yoshioka (National Institute of informatics)

“Hiro”nori Washizaki

* Prof., Head, Global Software
Engineering Laboratory, Waseda
University

 Visiting Assoc. Prof., National
Institute of Informatics

* Chair, IEEE CS Japan Chapter
* Chair, SEMAT Japan Chapter

* Convenor,
ISO/IEC/JTC1/SC7/WG20
° CO'Cha|r, IEEE ICST’ 17 Toyo National Institute of Informatics

;2

Waseda University

Agenda

Introduction

Security patterns

TESEM: testing models
TESEM: testing code
Conclusion and discussion

What’s the problem?

Role-based access control (RBAC) pattern
« Membe * Authorization_rule P t t
Actor User <1 Role o rg:];f "
<<boundary=>> R
ight
Delete Ul & 7
<<control>> call <<RBAC>> . .
StudentController |----» RBAC Inapproprlate ApprOpnate
delete(user id:int) access control() deSign deSign
. <<| Jspr>> <<rgle>> <<User>> <roles>
=<entity== U User Role
Student ser Role
id :int
user id:int <<right>> <<right>>
grade : String Right ‘ Right ‘

o

TESEM: Test Driven Secure Modeling Tool

* Security design/implementation guided by testing
pattern applications [ARES’13][ARES’14][1JSSE’14][ICST’15]

Security | Context
pattern [Problem

srrenreens AR Solution Q
_— ‘ q —
| UML ﬁ —
Y r‘—‘*xl E—
....... S |
] e e I create Actor
=== | create Ul : |::> puintott Loginteck) -
- | create Su bject.. cal | (¢ % password_desian_and_use,cheok_identification(..));
Test design as requirement Constraint, script Test case

[ARES’13] Validating Security Design Pattern Applications Using Model Testing, Int'l Conf. Availability, Reliability and Security
[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Int’| Conf. Availability, Reliability and Se
[[USSE’14] Validating Security Design Pattern Applications by Testing Design Models, Int'l J. Secure Software Engineering 5(4)
[ICST’15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST’15 Tools Track

Agenda

Introduction

Security patterns

TESEM: testing models
TESEM: testing code
Conclusion and discussion

Security for every phase

e Security concerns must be addressed at every
phase

—‘ Requirement’_‘ Design HlmplementationH Test ’-)

Security concerns

Threat modeling

Security DAY design Security testing
: review
requirements

Secure coding and
review

Security design

Patterns are promising at any phase

* Recurrent problems and solutions under specific contexts

* For requirements definition, design, implementation and
testing!

—‘ Requirement’_‘ Design HlmplementationH Test ’-)

Security concerns

Example of security pattern

 Name: Role-based access control (RBAC)

* Problem: How do we assign rights to people based on
their functions or tasks?

* Solution: Assign users to roles and give rights to these
roles so they can perform their tasks.

* Related patterns: Authorization,

User | * MemberOf * | Role * Authorization_rule * | ProtectionObject
id id id
name name name

Right

access_type

predicate

copy_flag
checkRights

Security patterns landscape [Heyman’07]

| Number of well described
-~~~ . security patterns is increasing

patterns
=t
Ln

10 -~
o -
) "~ 0-10% (Low)
0 rt P 20-30%
r - r
3 R, < 40-50% (Medium)
0 Ty o .-ﬁ
— 2 § = <" 60-70%
g g . il Quality
A2 = PP~ B80-90% (High)
=l P E T
™l = g
=
™=

T. Heyman, “An Analysis of the Security Patterns Landscape,” 2007

Pattern-oriented test architecture

Secu rity Context

e Security by proven patterns
patterns |Problem

— Security requirements, secure design Solution
and implementation -
e Patterns as abstract test cases ——
Abstract L
— Possible to prepare abstract constraints, | ¥
l

“constraints” and “templates” for templates — pL
testing model and code

— Necessary to concretize patterns Concret.e
against concrete constraints,
test cases

requirement/design/code

Security pattern
researches X I
[PLOP’15] ' o

Selection
7%

[Validation

7%

Detection
7%

Modeling
7%

[PLoP’15] Systematic Mapping of Security Patterns Research, Conf. Pattern Languages of Programs Conference

Agenda

Introduction

Security patterns

TESEM: testing models
TESEM: testing code
Conclusion and discussion

TESEM: Test Driven Secure Modeling Tool

[ARES’13][IJSSE"14][ICST’15]
~

,Securit i
/ Desi Y Context
eslign
' Pattegrn Problem
foroog . |Solution
(CH s
i | UML ﬁ
[
I Prrponst o
\ Test design as
N requirement

! create Actor
| create Ul ;
| create Subject..

Test Script

., s, =, ., ..,

ol

*

pointeat Logintheck) -
2l (¢ % password_design_and_use. check_identification..));

Test case

[[USSE’14] Validating Security Design Pattern Applications by Testing Design Models, Int’'l J. Secure Software Engineering 5(4

[ARES’13] Validating Security Design Pattern Applications Using Model Testing, Int'l Conf. Availability, Reliability and Security é

[ICST’15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST’15 Tools Track

Application of Security Design Patterns (SDP)

UM
- —
Ré)letBaied Access Contropi) ol W—ul
- Contex
- Problem Model not
- Solution considering security
-Structure Apply
- . >
/ N l
« MemberOf Rol * Authorization_ Protection LML |
ole Object 1

User

Model that reallzes

access control based
on Role 6
Q-7

Conventional problematic process

|Identify assets, threats,
== and countermeasures

\
o

Select SDP

— S ‘ I Vulnerabilities
E iUMLg—bApplySDP are not resolved

Incorrect pattern

application

Security patterns with OCL constraints

Access control
* Context

"Problem " Asset

=Solution *Threat
= Structure *Countermeasure: Security property

i

Role-based access control
* Context

*Problem
=Solution =

"Consequence: Security property

Security property at requirements level

* Nine types of security properties
* E.g. “Access Control”

1 2
User — —
Conditions |has access permission Yes | No
execute subject function x
<<boundary>> Actions)
Ul not execute subject 5
function - -
<<control>> §
Subject_contoller SO
subject_function() “a o

\ context controller
inv Security Requirement :

<<gntity=>

<<entity>> Entity if self. UL.Actor.right = true then
Entity / self.subject_funection = true
N | else
«E.:iﬁ; ’ self.subject_function = false
endif

Security property at design level

*E.g. “Role-based

access control
(RBAC)”

% User

1 |2
. access permission is given to <Role>

Conditions . P g Yes |No

which an <UserData> belongs

considers that actor has access N

permission

consider that actor does not have 9
Actions access permission

execute subject function X

not execute subject function X

<<boundary==>

Ul

<<control>> Il <<RBAC>>
Subject_contoller ca_. I—ﬂHE—I

subject_function() check_identification()
<<entity>> \
<<entity>> Entity <<Right>>]
Entity / T Rt
<<entity>> l% }
Entity

context subject_controller
inv access_control:
if self. RBAC.Right->exists(p |
p.right = true and
p.role_id = p.Role.id and

then

else

p.role_id = p.Role.User_Data.role_id)

Test cases for “RBAC”

Conditions

access permission is given
In <Role> to which an
<UserData> belongs

Our tool “TESEM”

considers that an actor have
access permission

consider that an actor does
not have access permission

execute subject function

not execute subject function

Create instances and check OCL
constrains on USE [*]

revent L In ion login Ulprevent in non |

M N O & Class invariants

payme

Invariant

payment_controller
payment_controller
payment_controller
payment_controller
payment_controller

Constraints ok.

[*] F. Buttnera, et al., “USE: a UML-based specification environment for validating UML and OCL,” SCP, vol.69. 2007.

Result

=1000

‘‘‘‘‘‘

RIS
user_ic
produc

1. == Test Script 4—
4

Class structure modeling
Behavior modeling
Application of security
design patterns :
Generation of test cases

Design process using extended patterns

i .(S.eiu:ity :egu‘irements (OCL)) -:-.QTESEM

O
: = ldentify assets, threats,
: : and countermeasures
N l EE N RE EEEEE . ! !
. Security design requirements (OCL)
: Execute test to .
= verify how model —
: satisfies security :
= requirements Select SDP Executetestto ™
Il . O
- * ‘ verify how model _
S ADDISDP g saifefies ooy @
: _and bind = lUML§ design O
'%-’ attern ->*) -»> requirements .
. OO0

......................... N elements %
E B EEEEEEEEEEEEEENEEEEEEEEEEEEEEEETDN

-'_f i_w!\ctt::fr

<<boundary>>

Delete Ul

<<control>>
StudentController

delete(user id:int)

<<egntity>>
Student

id :int
user_id :int
grade : String

Case study: Setting

* Target: Delete function of StudentController

 Threat: Privilege Escalation
- Any user can delete student’s data

* Countermeasure: Access Control

« Selected Pattern: Role-based access control

—>Realize access control based on role’s right

%' 4

Test-driven secure design

e Security Properties are in the Test cases

Eval. of
mitigation

Add test cases Find
\ vulnerability
Confirm tests fail

Confirm
tests pass
\ Fix model A}

Case study: Initial test for security requirement

Security requirement as decision table

1 |2
Conditions |“Actor” has access right Yes |No %
_ execute “delete” function X Actor
Actions - - _
cannot execute “delete” function X ooy
. Delete_UlI
‘ Verify whether
model satisfies | q.amcomeer
Security requirements as OCL expression secuyrity delete(user idint)
context StudentController requirement _
inv SecurityRequirement : Student
if self.DeleteUl.Actor.right = true and — gcne
self.delete = true grade : Scrine
else
self.delete = false

endif @

Case Study: Test failed

administrator:administrator

access_right=false

access 90 ® O O & Class invariants
Invariant Resul
studentcontroller::se... false

delete_ui:delete_ui

acce%s 86

studentcontroller:studentcontroller

acce%s 82 1 constraint failed. | 100% ”

student:student

result=true

id=1

user_id=1

grade=3

major=2

number=Undefined

auarantor name="masateru kobashi'

Actor can execute “delete” function without access right !

Model may contain vulnerability causing Privilege Escalation.

Case Study: Test for security design

Verify whether model with RBAC satisfies security design requirements

1|2

Conditions | Rights are given in “Role” which an “User” belongs | Yes | No

consider that “Actor” have access permission. X

consider that “Actor” does not have access

Actions permission.
execute “delete” function x %
can not execute “delete” function x Actor
l IVerify whether it
context subject_controller M Od el sati Sf| es
inv access_control: . . <<control>> call <<RBAC>>
- StudentController |----» RBAC
if self. RBAC.Right->exists(p | ecurity design Fmarmss e M Do
p.right = true and :
p.role_id = p.Role.id and reqUIrement
p.role_id = p.Role.User.role_id) — “User “Role
then id :int
self.DeleteUl.Actor.right = true and self.subject_function = true user._id :int po—
glse grade : String Rr;gght
self.DeleteUl.Actor.right = false and self.subject_function = false
endif

Case Study: Test failed, again

o
]

L rbac:rbac

user:user 1 constraint failed. Sl00%/
| userloer ¥ —_—

name='sample’
nationality="japan'
adress="hoge'
phone='080-1235-8233"
birthday='2015-02-11"
gender=1 role_name='manager'
modified="2015-02-04'
created='2015-02-04'
id=1
password="'piyohoge'

role_id=1 \es
access 111

role:role

jaccess 108 g

rightright
id=1
right=true
role_id=1

Model does not satisfy security design requirements.

TESEM detected incorrect applications of design pattern‘
g

Case Study: Model fixing

Fix design model until the tests successfully pass.

Refactoring

> Correct design

Class invariants -

Incorrect design

Satisfied

Invariant
® O O Class invariants studentcontroller:s... | true
Invariant Result
studentcontroller::se... false
Actor
<<boundary==
Delete_UI
user:user 1 constraint failed. | 100% onstraints ok. (Sms)
name='sample'
nationality="japan' <<control>> call <<RBAC>>
adress="hoge rolezrole StudentController |----» RBAC

phone='080-1235-8233'
birthday='2015-02-11'
gender=1
modified='2015-02-04'
created='2015-02-04'
id=1

access 108

id=1
role_name="'manager’

deletefuser id:int)

access control()

password="piyohoge' E— S — —<roleos
e a}e\ss 111 Student User Role
id :int
rightright use‘:_if:ls: iljlt
L?;h::::true grade : otring ‘C‘Cri.gh':?}
role_id=1 nght

Agenda

Introduction

Security patterns

TESEM: testing models
TESEM: testing code
Conclusion and discussion

TESEM: Test Driven Secure Modeling Tool

[ARES’14]

Security | Context

pattern |Problem |
T RETSNS .. |Solution ; I
|| o I
| UML ﬁ I
! I
' !
| | e | I create Actor I
vV v |V | I
= :> | create Ul : d> mointeut Loginheck()
—as %’“n- | create Sub je ct.. I 0l (¢ % password_design_and use. check_identification..)); I
Test design as Test Script . Testcase l
requirement — - - -

[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Int’l Conf. Availability, Reliability and S@

Security | Context
design |Problem
pattern |solution Preparation

Instrumentation template in Aspect J Instrumentation
// PointCut SUT

pointcut PasswordDesignAndUse() : :> |:>
call(* *..PasswordDesignAndUse.check identification(..)); Concrete
// Advice .
after() returning(Boolean right) : aspect In
PasswordDesignAndUse() {

setTemporary("PasswordDesignAndUse",right,h);
}

Template for creating testcases

Testcase template in Java Specify parameters

public class Password Design _and Use Test |
String getTemporary(String name){

Testing

- - - |:>

? Concrete

@Test

public void test1() | testcase
login(; .
assertEquals ("PasswordDesignAndUse.check identification() “, In Java

PasswordDesignAndUse , “true”);

J

Agenda

Introduction

Security patterns

TESEM: testing models
TESEM: testing code
Conclusion and discussion

Controlled experiments

* Target: EMSec [*], 24 use cases, 31 classes

 Ex 1: Pattern application to design
— 8 of 10 students applied patterns incorrectly without TESEM.
— All students confirmed incorrect applications by TESEM.
— Few students successfully fixed design.

e Ex 2: Fixing code with incorrect pattern application

— All 4 students found more defects in shorter time per defect
by using TESEM.

— All 4 students successfully fixed most of defects by using
TESEM, but required little longer time.

TESEM is useful for identifying incorrect applications.
Further fixing support is expected.

[*] EMSsec http://lab.iisec.ac.jp/~okubo lab/Members/okubo/wiki/index.php?EMSSec

http://lab.iisec.ac.jp/~okubo_lab/Members/okubo/wiki/index.php?EMSSec

Conclusion

Pattern-oriented test architecture and extended
security patterns using OCL-based constraints
and templates, which include requirement- and
design-level patterns

A new model/code-testing process based on TDD
to verify appropriate pattern applications and the
existence of vulnerabilities using these extended
patterns

A tool called TESEM that supports pattern
registration, application and verification

[ARES’13] Validating Security Design Pattern Applications Using Model Testing, Int'l Conf. Availability, Reliability and Security
[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Int’| Conf. Availability, Reliability and Security
[I[JSSE’14] Validating Security Design Pattern Applications by Testing Design Models, Int’l J. Secure Software Engineering 5(4)
[ICST'15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST’15 Tools Track

Discussion

e Pattern-oriented test architecture
— Efforts for preparing constraints/templates paid off?
— Correctness of patterns and concretization process?
— Need more appropriate or different architecture?

* Security pattern ecosystem
— Zero-day attack?

— Common Vulnerabilities and Exposures (CVE) ->
patterns -> concrete tests -> ...

* Fixing / refactoring support
— Automated fixing/refactoring ?

10th IEEE International Conference on
Software Testing, Verification and Validation

ICST 2017

13-18 March 2017,
Tokyo, Japan

L J R
»l .
r" . ')_-f‘%-.g. -}
/ 3 .::h A - ;ﬂ » ;\“] 'z

£TE S~ o g : _ N o X5
B’a’ ‘S‘f\:‘ N a Qﬂw" I ‘l‘?} : ,‘;? -
Mar 13-18 (due Sep 2016)
aster.or.jp/conference/icst2017/

R

