Proposal for Enhancing
UTP2 with Test Aspects

Makoto Nakakuki Koki Abe Hitoshi Ando
TEF-Do Tosei Systems Co., Ltd TEF-Do

Shizuka Ban Hiroki Iseri Kumiko Iseri
NPO ASTER NPO ASTER TIS Inc.

Noriyuki Mizuno Tomohiro Odan Akiharu Satoh

TEF-Do Mamezou Co., Ltd. Hitachi Information Academy Inc.

R W N =

Contents

. INTRODUCTION

. PROPOSAL FOR TEST ASPECT MODEL
. PROPOSAL FOR THE NOTATION

. CONCLUSION

INTRODUCTION

Introduction

Various models are developed prior to software testing.

be

\© complete

% — assumed to

Introduction

These incomplete models that have omitted information
are usually revised by modeling for software testing.

- %

Incomplete
models are

often
described

Introduction

Other aspects of development model are created from test

engineer’s concern.
Cooncern > Concern >

Wy

~7
@

)

\

PROPOSAL FOR
TEST ASPECT MODEL

Common Problem

Development Models are usually Incomplete...

To Complement a Development Model

The development model can be created using modeling
notations such as UML and SysML.

void isHoge()

for ()

To Complement a Development Model

The test design process creates a test project model.

“Test project model” has test cases.
void isHoge()

for ()

To Complement a Development Model

Relationship among software, development model and test
project model.

* "0
. .
.
o*

Case 1:
Development model is perfect

", Testing

Development
Model

Test Project
Model

Case 1:
Development model is perfect

Development
Model

Test Project
Model

Case 1:
Development model is perfect

Development
Model

Test Project
Model

Case 1:
Development model is perfect

Development
Model

Test project
Model

Case 1:
Development model is perfect

Test Projeat
Model

Development Model is Incomplete

17

Case 2.
Development Model is Incomplete

Developi ngx‘ "."Testi ng

Referring

Development
Model

Test Project
Model

Case 2.
Development Model is Incomplete

Test Projeat
Model

Case 2.
Development Model is Incomplete

20

Case 2.
Development Model is Incomplete

Test cases designed based on test engineer’s concern
usually detect these bugs.

Test Depends on the Test Engineers’ Skill

Test engineers sometimes rely on some information such
as “bugs” detected in the software components in the past.

Concerns

Development N\, ... [use]
Model :
___________-—-—-—‘T&"‘"' -
use
~~\{ d 7 Test Engineers’ “\~«_
, S g |)
.@ @ “““ Experience A
\

- - ‘
Test Engineers’ Skill !}
U
Tacit ,/'
~~3.. Knowledge ol

Case 3:
Test Depends on the Test Engineers’ Skill

Developi ng,o’ ".“Testing

Development
Model

Test Projec

¢

Case 3:
Test Depends on the Test Engineers’ Skill

(G (G
Test project
(@ Model
=~ e

Case 3:
Test Depends on the Test Engineers’ Skill

[]'e@alpp]'-t‘ .m
= Model

25

Use Aspect Model

Concerns of test engineers are usually tacit knowledge...

Concerns Tend to be Tacit and Subjective

We consider that much of information on testing will be

derived from concerns of test engineers.

Concerns

Development N\ [use]
Model :
/—7-“- -
use
~~\{ d 7 Test Engineers’ “\~«_
’ S g |)
.@ @ “““ Experience A
\

- - ‘
Test Engineers’ Skill !}
U
Tacit ,/'
~~3.. Knowledge ol

Define Concerns as Aspects

s

........
.....

.
s
.
.
.
.
.
.
.
.
.
*
*

\'4
,--=- Other Aspect of Software ---<_

/ e N

s o :

1 Yo :

| =y

I O

' e H | -

| Qe - ; Test Engineers’ 3~

l : Experience

| |

) g;] E:' q;] g;] g;]] Test Engineers’ Skill
|

l‘ ! Tacit

\ / S~ Knowledge -

\
1
1

28

Example
Define Method

Viewpoint Diagram

l :_ - Example of part of viewpoint diagram drawn for TRA

("""E_ma” clientﬁn"\ Test Item / SUT

Environment

Feature/U|
How to Test \
iOS"Clock App"

|
" Kind of 0S Version of 0OS Internet Explorer

go- .)47//(—(()«1 »(/(TJ//}/y 6 © NISHI, Yasuharu

Some Aspect of

Y.Nishi, “Design principles in Test Suite Architecture,”
International Workshop on Software Test Architecture (InSTA 2015),

deVEIOpment mOdel Graz, Austria, April 2015,

Define Concerns as Aspects

s

........
.....

.
s
.
.
.
.
.
.
.
.
.
*
*

\'4
,--=- Other Aspect of Software ---<_

/ e N

s o :

1 Yo :

| =y

I O

' e H | -

| Qe - ; Test Engineers’ 3~

l : Experience

| |

) g;] E:' q;] g;] g;]] Test Engineers’ Skill
|

l‘ ! Tacit

\ / S~ Knowledge -

\
1
1

30

Use Test Aspect

For Example...
Reliability
Security

Invalid Case

Proposal for Test Aspect Model

Development
Model

Proposal for Test Aspect Model

Development

Proposal for Test Aspect Model

@ Deveiopment @

Proposal for Test Aspect Model

Proposal for Test Aspect Model

Test Aspect
Model

Proposal for Test Aspect Model

Development <--efering Test project
Model Model
lestiaspect-/ = \g... Referring, .. Test Project

Model Model

Proposal for Test Aspect Model

Experience \‘
Test Engineers’ Skill !
“~~3._ Knowledge oping.~ "'.':I'esting

*
*

*
0“ ‘0
* *

Development Test Project
Model Model

KJ> [Other aspect of software] {WMJ

Other Aspect of Software

Proposal for Test Aspect Model

7 Test Engineers’ \\\
Experience \‘
Test Engineers’ Skill] ; 4
.~ Tacit /_" _
~~3. Knowledge oping. *, Testing

Referring

Test Project
Model

LConM\pensaJ;ed_Medel/fm/m}

Other Aspect of Software

Test Aspect Model
= —

Proposal for Test Aspect Model

Developing.+* "».'Testing

Development

Refert Test Project
eferring
Model

............. Model

Proposal for Test Aspect Model

Referring Information on
s EsssEnsnEnsnenennnnnnnnnnnndnnn testlng derlved by referr-lng to
development model only

Development
Model

Referring

Test Aspect Model Test Project Model

Case 1:
Development Model is Perfect

Development ___ Test Aspect = Test project
Model - Model Model

Referring Information on
------------- testing derived-byreferring to
development model only

Development
Model

Test Aspect Model Referring _Test Project Model

Case 1:
Development Model is Perfect

Development ___ Test Aspect = Test project
Model - Model Model

Referring

Information on
testing derived by referring to
development model only

Development
Model

Case 2.
Development Model is Incomplete

Development
Model

Test Aspect Test Project
< Model = Model

[Development Model + Other Aspect of Software]

Information on
testing derived by referring-to
development model only

Referring

Development
Model

Referring

Test Aspect Model Test Project Model

Case 2.
Development Model is Incomplete

Development
Model

Test Aspect Test Project

< Model S Model

Information on
testing derived by referring to
development model only

Development N\ Referring .

[Other Aspect of Software]

Also Enrich Test Project Model

Referring

Test Aspect Model

Jest Project Mode

Using the Test Aspect Model

Furthermore, we suggest to share information and
agreement among stakeholders, and to grasp the whole
picture, using the test aspect model.

This approach will smoothen the problems when test
designs rely on test engineer's skills.

PROPOSAL FOR THE NOTATION

Next Problem

Complicated system has many test aspects...

Next Problem..

As the software itself is bigger and more complicated now.
— Test aspect models also become complicated.

Next Problem..

These test aspects are usually tacit knowledge.

Next Problem — Necessity for the Notation

- to share the information with other test engineers
- to grasp a holistic model

- to find the omitted test aspect information

The unified notation is essential...

‘
@" =

Necessity for the Notation.

The requirement for the notation
In UML Testing Profile...

Necessity for the Notation

- to share the information with several test engineers

- to grasp a holistic model
- to find the omitted aspect information.

Requirements for the Notation

- to share the information with several test engineers
— The notation should be easy to be shared and
to be learned by test engineers.

- to grasp a holistic model

- to find the omitted aspect information.

— The notation should have capacity
to organize complicated information.

Example of Test Aspect

Test for ATM “deposit” function.
Following items(test aspects) may be
considered for designing test cases.

Insert Money (Test) Reliability (Test)

— Valid Money — Repeated transaction
— Invalid Money — Contingency approach

56

References of other Notations

Viewpoint Diagram

Example of part of viewpoint diagram drawn for TRA

(E-mail client) ey e

' Kind of 0S Version of 0OS Internet Explorer

? ¥ . /z‘% vane v(/;l /()/y

Y.Nishi, “Design principles in Test Suite Architecture,”
International Workshop on Software Test Architecture (InSTA 2015),
Graz, Austria, April 2015.

Test Conglomeration

5. Components of the Notation

A. Structure of a Single Test Conglomeration Unit

unit name

]
Notify Alarm 4. Proposal of Test Conglomeration

Test Type or | +Confirm each function : Funotional Suitability

o

. ":.A\en in the background : Compatibility ~ €=t

9 Summary of Test Conglomeration Notation.

+ Gonfirm Alerm : Confirm each function

+ Confirm Snooze | Confirm each function <Overview Picture> <Detailed Picture>
f . =
High-Level test case. [3 |
17 March 2017, InSTA2017 : 4th International Workshop on Software Test Architectt ———
————————

[o |

e

N

17 rkshop on Software Test Architecture 46

N.Mizuno, M.Nakakuni and Y.Seino, “Test Conglomeration

- Proposal for Test Design Notation like Class Diagram,”
International Workshop on Software Test Architecture (InSTA2017),
March 2017.

Requirements for the Notation

Each element has relationship with others.

5. Components of the Notation

Example of part of viewpoint diagram drawn for TRA

E-mail client) Test Item / SUT

?i e /{'% coare

A. Structure of a Single Test Conglomeration Unit

Test Type or
Test—Category

unit name
|

NotifyvAIarm

+Gonfirm each function : Functional Suitability
I™ Alert in the background: Compatibility ==

+ Gonfirm Alerm : Confirm each function
+ Confirm Snooze : Confirm each function

T
High-Level test case.

o

4. Proposal of Test Conglomeration

Summary of Test Conglomeration Notation.

<Overview Picture>

<Detailed Picture>

17 March 2017, InSTA2017 : 4th International Workshop on Software Test Architect

rkshop on Software Test Architecture

46

Requirements for the Notation

Each element has relationship with others.
In the notation, “has-a”,"is-a ” relationships are useful.
— UML metaclass “class” is suitable

for describing test aspect.

V7 14 : . 7 n” . :
iIs-a” relationship has-a” relationship
<<TeStASpeCt>> <<TestAspect>> <<TestAspect>>
Insert Money el Ammount
<<TestAspect>> <<TestAspect>> <<TestAspect>> <<TestAspect>>

Repeated transaction Contingency approach Under allowable limit Over allowable limit

In UML Testing Profile

S

UML
TESTING

PROFILE

http://utp.zen-tools.com/

60

In UML Testing Profile

System-Integration-Level Tests ,
SWIFTTest | [Load tes’(s] L 8D
=D
stestContexts amports &
SWIFTSuite «testComponents d] <Hmm ------ >|swiftNetwork
TransactionController
-numlUsers:integer = 0
-pc:Float -nitUSbal: IMoney e
atestCases -unUSTrm(p:U Data)-Verdict -nitEUbal: IMoney -0
atestCases -runEUTHM(p; nnData) Verdict |Account
atestCases -Wiring():Vepélict : dmports
atestCases +loadTest N S > Bank
(maxUsers:Integer,p:Float): Verdict H
_drefault . Defah|
cinterfaces ransactionControlier: tcl uit
aimports
u M l A =P ATM
LoadArbiter
«testComponents
-numPass:integer loadManager
-numOtherInteger \\’_"‘\ dm> TestDat:
meseee estData
User-deﬁnedw
£C00P, Oue, une 008 -arbiter [r——

. - The UML Testing Profile - Tutorial at the ECOOP 2004 -
http://utp.zen-tools.com/ http://folk.uio.no/oysteinh/Schieferdecker-Haugen-

ECOOP2004-U2TP.pdf

In UML Testing Profile

o It has no concept to
describe an element

like the test aspect.

Nor it has no way to
describe structure of
test cases.

UML
TESTING

PROFILE

http://utp.zen-tools.com/

62

In UML Testing Profile

P

N
o It has no concept to
describe an element

UML like the test aspect.
TESTING Nor it has no way to
PROFILE describe structure of

test cases.

http://utp.zen-tools.com/
63

S

UML
TESTING

PROFILE

http://utp.zen-tools.com/

We propose for

64

We propose for

Enhancing UTP2 with “Test Aspects”

a <<TestAspect>>

UML

+ XXX

TESTING

PROFILE

http://utp.zen-tools.com/

Explanation and Example of
the Notation for Test Aspect

The notation of Test Aspect
Example of Test Aspect Model

The Notation for Test Aspect

Metaclass “class” with stereotype “TestAspect”

<<TestAspect>>
Insert Money

Metaclass “package” with stereotype “TestAspects”

<<TestAspects>>
deposit_TestAspects

Example of Test Aspect Model

Example for ATM “deposit” test l .

ATM

<<Interface>>
IATM

+ withdraw(in amount : iMoney) : boolean

+ deposit(in amount : iMoney) : boolean

+ isPinCorrect(in c : integer) : boolean

+ selectOperation(in op : OpKind) : boolean
+ storeCardData(In c : CardData)

<<Enumeration>> CardData
OpKind - pinCode : integer

- withdrawMoney - cardNumber : String

i ggtBaIance + isPinCorect() : boolean

- wireMoney

ATM

described in UTP2.0

S

UML
TESTING
PROFILE

https://www.omg.org/spec/UTP/About-UTP/

68

Example of Test Aspect Model

“Test Aspects” deposit package is extracted.

ATM

deposit

<<Interface>>
IATM

+ withdraw(in amount : iMoney) : boolean

+ deposit(in amount : iMoney) : boolean

+ isPinCorrect(in c : integer) : boolean

+ selectOperation(in op : OpKind) : boolean
+ storeCardData(In c : CardData)

<<Enumeration>> CardData
OpKind - pinCode : integer

- withdrawMoney - cardNumber : String

- getBalance

+ isPinCorect() : boolean

- wireMoney

Example of Test Aspect Model

“Test Aspects” deposit package is extracted.

ATM

<<Interface>>
IATM

deposit

+ withdraw(in amount : iMoney) : boolean

+ deposit(in amount : iMoney) : boolean

+ isPinCorrect(in c : integer) : boolean

+ selectOperation(in op : OpKind) : boolean
+ storeCardData(In c : CardData)

<<TestAspects>>
deposit_TestAspects

<<Enumeration>> CardData
OpKind - pinCode : integer

- withdrawMoney - cardNumber : String

i ggtBaIance + isPinCorect() : boolean

- wireMoney

Example of Test Aspect Model

Deposit has following test aspects.

<<TestAspects>>
deposit_TestAspects

<<TestAspect>>
Insert money

Pl

<<TestAspect>> <<TestAspect>>
Valid money Invalid money

Example of Test Aspect Model

Deposit has following test aspects.

<<TestAspects>>
deposit_TestAspects

<<TestAspect>>
Insert money

Pl

<<TestAspect>> <<TestAspect>> <<TestAspect>>
Valid money Invalid money Ammount
<<TestAspect>> <<TestAspect>>
Under allowable limit Over allowable limit

Example of Test Aspect Model

Deposit has following test aspects.

<<TestAspects>>
<<TestAspect>> deposit_TestAspects
Perfomance efficiency

<<TestAspect>> <<TestAspect>>
Response time |—] Insert money
<<TestAspect>> <<TestAspect>> <<TestAspect>>

Valid money Invalid money Ammount

<<TestAspect>> <<TestAspect>>
Under allowable limit Over allowable limit

Example of Test Aspect Model

Deposit has following test aspects.

<<TestAspects>>

<<TestAspect>> deposit_TestAspects

Perfomance efficiency

<<TestAspect>>
Reliability

T = 7

<<TestAspect>>
Response time

<<TestAspect>>

Insert money |—

<<TestAspect>>

Repeated transactions

<<TestAspect>>

Contingency approach

el

<<TestAspect>>
Valid money

<<TestAspect>>
Invalid money

<<TestAspect>>
Ammount

~ N

ZXK

<<TestAspect>>
Power outage

<<TestAspect>>
Under allowable limit

<<TestAspect>>

Over allowable limit

<<TestAspect>>
Cash s packed

Example of Test Aspect Model

Test cases are designed from the part of these test aspects.

<<TestAspects>>

<<TestAspect>> deposit_TestAspects <<TestAspect>>
Perfomance efficiency Reliability
<<TestAspect>> <<TestAspect>> <<TestAspect>> <<TestA £ |
Response time |—| Insertmoney |— Repeated transactions Contingenc Examp|e Of Test Cases...
- Insert a valid money that amount is
/v % under allowable limit
<<TestA t>> <<TestA t>> <<TestAspect>> 0
Tesnspece | [<closspoces | [<<Tostapec (User can insert money successfully)
- Insert invalid money (Error will occur)
A N - Insert valid money repeatedly
<<TestAspect>> <<TestAspect>> <<Test (All transactions success normally)
Under allowable limit Over allowable limit Cashisk
75

Position of Test Aspect in UTP2

UML Testing Profile (UTP) Version 2.0 — Beta
In UTPZ ' O e Publication Date: September 2017

Figure 7.2 Test Requirement and Test Objective Overview

SysML etc.

(Functional & Non Functional) . . .
Requirement —[> System specification item

UTP
Test objective <« is designed to
meet .
Test requirement
A specifies ¥V is designed to -
meet A verifies
refers to
Test context > Test case

Position of Test Aspect in UTP2

Example : defects
that occurred in the

In UTP2.0 with Test Aspect...

pa st.
SysML etc.
A s designed to meet
I I I g
(Functional & Non Functional) . . . Information outside
Requiﬁem ent —I > System spec1|ﬁcat10n item (Development model) the project
. . I . . Ais designed
Vis designed Vis designed
! g Background of & Ais designed to meet
to meet system requirement to meet to meet
Test aspect
UTP A refers to P
o)) A refers to
Test objective s designed to Arefers to
meet .
Test requirement
A specifies ¥V is designed to .
meet A verifies
refers to
Test context > Test case |

Advantage of Test Aspect

The test aspect can complement development models.

78

Advantage of Test Aspect

- Test aspects can be used to organize the information in
the test design process. This characteristic can improve
systemized knowledge of the test design.

- The relationship among test aspects enables to grasp the
intention of the test design.

- Test engineers can maintain the structure of test aspects
using the test aspect model.

As a result, maintainability of the test suite improves.

CONCLUSION

Conclusions

« The test aspect can complement the development model.

* The test aspect can indicate missing information in the
development model.

 Test aspect model can describe relationships among test
aspects.

» Test aspects organized appropriately in the test aspect
model can complement necessary information that is not
found in development models.

 This model enables to reduce test case omissions in test
design process.

Thank you!
Any Questions?

We are not good at English.
So please speak clearly and slowly.

Special Thanks

Satomi-Juku

What is Satomi-Juku ?

"Satomi-juku" is a research group of test architecture.
It is a place to disclose & share each advanced test development methods
them through discussion.

EEE R

References

[1] OMG, “UML Testing Profile (UTP) Version 2.0 - Beta,”
http://www.omg.org/spec/UTP/2.0/, September 2017.

[2] Y.Nishi, “Design principles in Test Suite Architecture,”
International Workshop on Software Test Architecture
(InSTA 2015), Graz, Austria, April 2015.

[3] Y. Nishi, T. Katayama and S. Yoshizawa, “Combinatorial
Test Architecture Design Using Viewpoint diagram,”
International Workshop on Combinatorial Testing
(IWCT2013), Luxembourg, March 2013, CD-ROM.

[4] OMG, “UML Version 2.4.1," http://www.uml.org/, 2012.

References

[250]1%)MG, “SysML Version 1.5," http://www.omgsysml.org/,

[6] ISO/IEC 25010:2011, “Systems and software engineering
— Systems and software Quality Requirements and Evaluation
(SQuaRE)—-System and software quality models,” 2011.

[7] Glenford J. Myers, Tom Badgett, Corey Sandler, "The Art of
Software Testing 3rd edition,” Wiley, 2011.

[8] N.Mizuno, M.Nakakuni and Y.Seino, “Test Conglomeration -
Proposal for Test Design Notation like Class Diagram,”
International Workshop on Software Test Architecture
(InSTA2017), March 2017.

References

[9] T.Yumoto, T.Matsuodani, and K.Tsuda, ” A Study on the
effectiveness of Test-Categories based test analysis” ,
International Workshop on Software Test Architecture

(InSTA2016), Chicago, April 2016.

[10] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, “Design Patterns: Elements of Reusable Object-
Oriented Software,” Addison-Wesley Professional, 1994

